
COBOL for z/OS V5 and
PDSE load libraries

Tom Ross

March 2014

2

PDSE requirement for
COBOL V5 executables

• COBOL V5 executables are not “load modules”. They are
“program objects”. Load modules reside in a PDS
dataset. Program objects can only reside in a PDSE
dataset (or z/OS UNIX file).

• Therefore, customers using PDS load libraries for COBOL
executables must migrate to PDSE load libraries prior to
creating COBOL V5 executables. There is no alternative
to converting.

• If interested in COBOL V5, start migrating COBOL load
libraries to PDSE datasets ASAP!

• Now, why PDSE datasets and why are PDSE datasets
better than PDS datasets?

3

First some history about PDS datasets

• When using PDS datasets for load libraries,
customers had problems with :
• The need for frequent compressions,
• Loss of data due to the directory being overwritten
• Performance impact due to a sequential directory search
• Performance delay if member added to beginning of

directory
• Problems when PDS went into multiple extents

4

First some history about PDS datasets

• More problems with PDS dataset load libraries:
• PDS datasets could not share update access to members

without an enqueue on the entire data set.
• The biggest drawback to PDS load libraries was that they

had to be taken offline from time to time for:
• A compression to reclaim member space or
• Directory reallocation to reclaim directory gas

• Because of this, applications could not have 24/7/365
access

5

Introducing PDSE datasets for load libraries!

• PDSEs, which were introduced in 1990, were designed
to eliminate or at least reduce these problems

• They have! It's unfortunate that the rollout of PDSEs was
so painful (lots and lots of APARs) that many sites have
steered clear of them

• OTOH, many sites HAVE moved their COBOL load
libraries to PDSEs, it is fairly mechanical

6

How to migrate from PDS load libraries to
PDSE load libraries:

• Assuming the conversion of an entire PDS to a PDSE,
the general steps are as follows:
• Allocate a new PDSE dataset, such as &pds.PDSE, where

“&pds” is the PDS dataset name.
• Use IEBCOPY (or ISPF) to copy the load modules from the

PDS into the PDSE.
• This will automatically convert the load modules to program

objects in the PDSE.

• Rename the PDS. Example: &pds.BACKUP. Retain this
dataset (short term) for recovery purposes.

• Rename the PDSE to &pds, where “&pds” is the original
PDS dataset name.

7

How to migrate from PDS load libraries to
PDSE load libraries, some notes:

• Any Load Module in a PDS can be copied into a PDSE
• It then becomes a Program Object
• Program Management Binder is called by IEBCOPY or

ISPF to do the conversion for you

• Not all Program Objects in PDSEs can be copied back to
PDS and Load Module form

• This means that if a Program Object member in a PDSE
on a test system is then shipped to production, and the
receiving dataset on the production system is a PDS,
then there could be a copy problem.

• Convert the downstream library first, i.e. convert the
production PDS to a PDSE. Then convert the test
system PDS to a PDSE.

8

Why are PDSE load libraries required
with COBOL Version 5?

• First some history about Load Modules
• z/OS has been moving to solve problems due to limitations

of Load Modules for years
• Program Management BINDER has made many changes

to solve these problems
• Many of these solutions required a new format of

executable
• Program Objects was the answer
• Program Objects have features that cannot be supported

by PDS datasets, so they require PDSE datasets

9

Load Modules versus Program Objects
• Program Management Binder solves existing problems with

Load Modules using new features of Program Objects
• Example: when customers reached 16M text size limit of load

module, our answer was always: “Re-engineer programs to be
smaller, re-design” …expensive and not well received!

• A program object can have a text size of up to 1 gigabyte
• COBOL can take advantage of this by having more constants

for improved MOVE and INITIALIZE performance
• Makes object size bigger

10

Why are PDSE load libraries required
with COBOL Version 5?

• COBOL V4 required Program Objects and thus PDSE
for executable for certain features since 2001:
• Long program names
• Object-Oriented COBOL
• DLLs using the Binder instead of prelinker

• COBOL V5 requires Program Objects and thus PDSE
load libraries for all executables

• How about some examples of specific features that
COBOL V5 has that can only be supported by Program
Objects (PO) and PDSE Load libraries?

11

Why PDSE for COBOL V5 executables?

• COBOL improving performance using new features that
are only available in Program Objects (PO)
• Improved init/term scheme relies on user-defined classes in

object, requiring PO
• QY-con requires PO

• That's a performance improvement for RXY (long displacement)
instructions.

• Condition-sequential RLD support requires PO
• Performance improvement for bootstrap invocation

• PO can get page mapped 4K at a time for better performance

12

Why PDSE for COBOL V5 executables?

• Other features requiring Program Objects
• NOLOAD class DWARF debugging data requires PO
• Common reentrancy model with C/C++ requires PO
• XPLINK requires PO and will be used for AMODE 64

13

What about sharing COBOL load
libraries across SYSPLEX systems?

• PDSE datasets cannot be shared across SYSPLEX
boundaries

• If PDS load libraries are shared across SYSPLEX
boundaries today, in order to move to PDSE load libraries,
customers can use a master-copy approach
• One SYSPLEX can be the writer/owner of master PDSE load

library (development SYSPLEX)
• When PDSE load library is updated, push the new copy out

to production SYSPLEX systems with XMIT or FTP
• The other SYSPLEX systems would then RECEIVE the

updated PDSE load library

14

Can I mix PDS and PDSE load libraries?

• If you convert all load libraries to PDSE first, no worries
• IE: You will no longer have any PDS load libraries

• If you create a new PDSE dataset and put new code there
while keeping existing load modules in PDS load library,
you could end up using both PDS and PDSE load libraries
in a single application:
• COBOL V5 in PDSE load library can call COBOL V4 in PDS

load library without problems (and vice-versa)
• DYNAMIC CALL only of course

• If you start with COBOL V4 (or V3, V2) code in a PDS load
library and recompile one program of a load module with
COBOL V5, and then re-BIND, the result will be a Program
Object, and will go into a PDSE
• STATIC CALL in this case

