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PDSE requirement for 
COBOL V5 executables

• COBOL V5 executables are not “load modules”.  They are 
“program objects”.  Load modules reside in a PDS 
dataset.  Program objects can only reside in a PDSE 
dataset (or z/OS UNIX file).  

• Therefore, customers using PDS load libraries for COBOL 
executables must migrate to PDSE load libraries prior to 
creating COBOL V5 executables. There is no alternative 
to converting.

• If interested in COBOL V5, start migrating COBOL load 
libraries to PDSE datasets ASAP!

• Now, why PDSE datasets and why are PDSE datasets 
better than PDS datasets? 
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First some history about PDS datasets

• When using PDS datasets for load libraries, 
customers had problems with :
• The need for frequent compressions, 
• Loss of data due to the directory being overwritten
• Performance impact due to a sequential directory search 
• Performance delay if member added to beginning of 

directory
• Problems when PDS went into multiple extents
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First some history about PDS datasets

• More problems with PDS dataset load libraries:
• PDS datasets could not share update access to members 

without an enqueue on the entire data set.
• The biggest drawback to PDS load libraries was that they 

had to be taken offline from time to time for: 
• A compression to reclaim member space or 
• Directory reallocation to reclaim directory gas

• Because of this, applications could not have 24/7/365 
access
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Introducing PDSE datasets for load libraries!

• PDSEs, which were introduced in 1990, were designed 
to eliminate or at least reduce these problems 

• They have! It's unfortunate that the rollout of PDSEs was 
so painful (lots and lots of APARs) that many sites have 
steered clear of them

• OTOH, many sites HAVE moved their COBOL load 
libraries to PDSEs, it is fairly mechanical
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How to migrate from PDS load libraries to 
PDSE load libraries:

• Assuming the conversion of an entire PDS to a PDSE, 
the general steps are as follows:
• Allocate a new PDSE dataset, such as &pds.PDSE, where 

“&pds” is the PDS dataset name.
• Use IEBCOPY (or ISPF) to copy the load modules from the 

PDS into the PDSE.
• This will automatically convert the load modules to program 

objects in the PDSE. 

• Rename the PDS.  Example:  &pds.BACKUP.  Retain this 
dataset (short term) for recovery purposes.

• Rename the PDSE to &pds, where “&pds” is the original 
PDS dataset name.
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How to migrate from PDS load libraries to 
PDSE load libraries, some notes:

• Any Load Module in a PDS can be copied into a PDSE
• It then becomes a Program Object
• Program Management Binder is called by IEBCOPY or 

ISPF to do the conversion for you

• Not all Program Objects in PDSEs can be copied back to 
PDS and Load Module form

• This means that if a Program Object member in a PDSE 
on a test system is then shipped to production, and the 
receiving dataset on the production system is a PDS, 
then there could be a copy problem.  

• Convert the downstream library first, i.e. convert the 
production PDS to a PDSE.  Then convert the test 
system PDS to a PDSE.
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Why are PDSE load libraries required 
with COBOL Version 5?

• First some history about Load Modules 
• z/OS has been moving to solve problems due to limitations 

of Load Modules for years
• Program Management BINDER has made many changes 

to solve these problems
• Many of these solutions required a new format of 

executable
• Program Objects was the answer 
• Program Objects have features that cannot be supported 

by PDS datasets, so they require PDSE datasets
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Load Modules versus Program Objects
• Program Management Binder solves existing problems with 

Load Modules using new features of Program Objects
• Example: when customers reached 16M text size limit of load 

module, our answer was always:  “Re-engineer programs to be 
smaller, re-design” …expensive and not well received!

• A program object can have a text size of up to 1 gigabyte 
• COBOL can take advantage of this by having more constants 

for improved MOVE and INITIALIZE performance  
• Makes object size bigger
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Why are PDSE load libraries required 
with COBOL Version 5?

• COBOL V4 required Program Objects and thus PDSE 
for executable for certain features since 2001:
• Long program names
• Object-Oriented COBOL
• DLLs using the Binder instead of prelinker

• COBOL V5 requires Program Objects and thus PDSE 
load libraries for all executables

• How about some examples of specific features that 
COBOL V5 has that can only be supported by Program 
Objects (PO) and PDSE Load libraries?
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Why PDSE for COBOL V5 executables?

• COBOL improving performance using new features that 
are only available in Program Objects (PO)
• Improved init/term scheme relies on user-defined classes in 

object, requiring PO 
• QY-con requires PO  

• That's a performance improvement for RXY (long displacement) 
instructions. 

• Condition-sequential RLD support requires PO
• Performance improvement for bootstrap invocation

• PO can get page mapped 4K at a time for better performance
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Why PDSE for COBOL V5 executables?

• Other features requiring Program Objects
• NOLOAD class DWARF debugging data requires PO 
• Common reentrancy model with C/C++ requires PO
• XPLINK requires PO and will be used for AMODE 64 
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What about sharing COBOL load 
libraries across SYSPLEX systems?

• PDSE datasets cannot be shared across SYSPLEX 
boundaries

• If PDS load libraries are shared across SYSPLEX 
boundaries today, in order to move to PDSE load libraries, 
customers can use a master-copy approach
• One SYSPLEX can be the writer/owner of master PDSE load 

library (development SYSPLEX)
• When PDSE load library is updated, push the new copy out 

to production SYSPLEX systems with XMIT or FTP
• The other SYSPLEX systems would then RECEIVE the 

updated PDSE load library
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Can I mix PDS and PDSE load libraries?

• If you convert all load libraries to PDSE first, no worries
• IE: You will no longer have any PDS load libraries

• If you create a new PDSE dataset and put new code there 
while keeping existing load modules in PDS load library, 
you could end up using both PDS and PDSE load libraries 
in a single application:
• COBOL V5 in PDSE load library can call COBOL V4 in PDS 

load library without problems (and vice-versa)
• DYNAMIC CALL only of course

• If you start with COBOL V4 (or V3, V2) code in a PDS load 
library and recompile one program of a load module  with 
COBOL V5, and then re-BIND, the result will be a Program 
Object, and will go into a PDSE
• STATIC CALL in this case


